Bài tập hằng đẳng thức lớp 8 là tài liệu vô cùng hữu ích dành cho các bạn học sinh lớp 8 ôn luyện củng cố kiến thức. Tài liệu hệ thống toàn bộ kiến thức trọng tâm về lý thuyết, công thức cách giải các dạng toán cơ bản về hằng đẳng thức.
Thông qua tài liệu này sẽ giúp cho các em ôn tập kiến thức một cách hiệu quả, định hướng đúng trong quá trình ôn tập và tiết kiệm tối đa thời gian học tập. Hi vọng các dạng bài tập về hằng đẳng thức Toán 8 sẽ là những người bạn thân thiết, cùng bạn đồng hành trên hành trình chinh phục mục tiêu 9+ môn Toán. Bên cạnh đó các bạn xem thêm bài tập về Bình phương của một tổng, bài tập hiệu hai bình phương.
A. Lý thuyết 7 hằng đẳng thức
1. Bình phương của một tổng
– Bình phương của một tổng bằng bình phương số thứ nhất cộng với hai lần tích số thứ nhân nhân số thứ hai rồi cộng với bình phương số thứ hai.
(A + B)2 = A2 + 2AB + B2
Ví dụ:
2. Bình phương của một hiệu
– Bình phường của một hiệu bằng bình phương số thứ nhất trừ đi hai lần tích số thứ nhất nhân số thứ 2 rồi cộng với bình phương số thứ hai.
(A – B)2 = A2 – 2AB + B2
Ví dụ:
( x – 2)2 = x2 – 2. x. 22 = x2 – 4x + 4
3. Hiệu hai bình phương
– Hiệu hai bình phương bằng hiệu hai số đó nhân tổng hai số đó.
A2 – B2 = (A + B)(A – B)
Ví dụ:
4. Lập phương của một tổng
– Lập phương của một tổng = lập phương số thứ nhất + 3 lần tích bình phương số thứ nhất nhân số thứ hai + 3 lần tích số thứ nhất nhân bình phương số thứ hai + lập phương số thứ hai.
(A + B)3 = A3 + 3A2B + 3AB2 + B3
Phát biểu thành lời: Lập phương của một tổng bằng lập phương số thứ nhất cộng ba lần bình phương số thứ nhất nhân với số thứ hai, cộng với ba lần số thứ nhất nhân bình phương số thứ hai rồi cộng với lập phương số thứ hai.
Ví dụ minh họa
5. Lập phương của một hiệu
– Lập phương của một hiệu = lập phương số thứ nhất – 3 lần tích bình phương số thứ nhất nhân số thứ hai + 3 lần tích số thứ nhất nhân bình phương số thứ hai – lập phương số thứ hai.
(A – B)3 = A3 – 3A2B + 3AB2 – B3
Phát biểu thành lời: Lập phương của một tổng bằng lập phương số thứ nhất trừ ba lần bình phương số thứ nhất nhân với số thứ hai, cộng với ba lần số thứ nhất nhân bình phương số thứ hai rồi trừ với lập phương số thứ hai.
Ví dụ minh họa
6. Tổng hai lập phương
– Tổng của hai lập phương bằng tổng hai số đó nhân với bình phương thiếu của hiệu.
A3 + B3 = (A + B)(A2 – AB + B2)
Ví dụ;
7. Hiệu hai lập phương
– Hiệu của hai lập phương bằng hiệu của hai số đó nhân với bình phương thiếu của tổng.
A3 – B3 = (A – B)(A2 + AB + B2)
Ví dụ:
B. Ví dụ minh họa về hằng đẳng thức
Ví dụ 1
Viết các biểu thức sau thành đa thức:
Gợi ý đáp án
Ví dụ 2
Viết các biểu thức sau thành bình phương của một tổng hoặc một hiệu
Gợi ý đáp án
Ví dụ 3
Viết các biểu thức sau thành đa thức:
Gợi ý đáp án
Ví dụ 4
a) Viết biểu thức tính diện tích của hình vuông có cạnh bằng 2x + 3 dưới dạng đa thức
b) Viết biểu thức tính thể tích của khối lập phương có cạnh bằng 3x – 2 dưới dạng đa thức
Gợi ý đáp án
Ví dụ 5
Tính nhanh
Gợi ý đáp án
Ví dụ 6
Viết các biểu thức sau thành đa thức:
Gợi ý đáp án
C. Bài tập hằng đẳng thức đáng nhớ
Bài toán 1: Tính
Bài toán 2: Tính
Bài toán 3: Viết các đa thức sau thành tích
Bài 4: Tính nhanh
2. 29,9.30,1
4. 37.43
Bài toán 5: Rút gọn rồi tính giá trị biểu thức
Bài toán 6 : viết biểu thức thành tích chứng minh với moi số nguyên n biểu thức chia hết cho 8
Bài toán 7 : Chứng minh với moi số nguyên N biểu thức chia hết cho 4
Bài toán 8 : Viết biểu thức sau dưới dang tích
Bài toán 9. Điền vào dấu ? môt biểu thức để được môt hằng đẳng thức, có mấy cách điền
a. (x+1).?
b.
c.
d. (x-2) . ?
i. ?+8 x+16
Bài toán 10. Viết biểu thức sau dưới dang tích
Bài toán 11. Viết biểu thức sau dưới dang tích
Bài toán 12. Viết biểu thức sau dưới dạng tổng
b..
Bài toán 13: Viết biểu thức sau dưới dạng tổng
b.
Bài 14: Viết các biểu thức sau dưới dạng bình phương của một tổng:
a) x2 – 8x + 16 | b) 9x2 – 12x + 4 |
Gợi ý đáp án
a) x2 – 8x + 16 = x2 – 2.4x + 42 = (x – 4)2
b) 9x2 – 12x + 4 = (3x)2 – 2.3x.2 + 22 = (3x – 2)2
Bài 15: Thực hiện phép tính:
a) (3x- 2y)2 | b) (x – xy)2 |
c) (1 – 3a)2 | d) (a – 2b)2 + (2a – b)2 |
Gợi ý đáp án
a) (3x- 2y)2 = (3x)2 – 2.3x.2y + (2y)2 = 9x2 – 12xy + 4y2
b) (x – xy)2 = x2 – 2.x.xy + (xy)2 = x2 – 2×22y + x2y2
c) (1 – 3a)2 = 12 – 2.1.3a + (3a)2 = 1 – 6a + 9a2
d) (a – 2b)2 + (2a – b)2 = a2 – 2.a.2b + (2b)2 + (2a)2 – 2.2a.b + b2
= a2 – 4ab + 4b2 + 4a2 – 4ab + b2
= 5a2 – 8ab + 5b2
Bài tập 16: Tính giá trị của biểu thức A = 16x2 – 24x + 9 tại x = 1
Gợi ý đáp án
Ta có: A = 16x2 – 24x + 9 = (4x)2 – 2.4x.3 + 32 = (4x – 3)2(*)
Thay x = 1 vào biểu thức (*) ta được:
A = (4.1 – 3)2 = 12 = 1
Vậy tại x = 1 biểu thức A có giá trị bằng 1
…………..
D. Bài tập nâng cao cho các hằng đẳng thức
Bài 1. Cho đa thức 2x² – 5x + 3 . Viết đa thức trên dưới dạng 1 đa thức của biến y trong đó y = x + 1.
Lời Giải
Theo đề bài ta có: y = x + 1 => x = y – 1.
A = 2x² – 5x + 3
= 2(y – 1)² – 5(y – 1) + 3 = 2(y² – 2y + 1) – 5y + 5 + 3 = 2y² – 9y + 10
Bài 2. Tính nhanh kết quả các biểu thức sau:
a) 127² + 146.127 + 73²
b) 98.28– (184 – 1)(184 + 1)
c) 100² – 99² + 98² – 97² + …+ 2² – 1²
d) (20² + 18² + 16² +…+ 4² + 2²) – ( 19² + 17² + 15² +…+ 3² + 1²)
Lời Giải
a) A = 127² + 146.127 + 73²
= 127² + 2.73.127 + 73²
= (127 + 73)²
= 200²
= 40000 .
b) B = 9 8 .2 8 – (18 4 – 1)(18 4 + 1)
= 188 – (188 – 1)
= 1
c) C = 100² – 99² + 98² – 97² + …+ 2² – 1²
= (100 + 99)(100 – 99) + (98 + 97)(98 – 97) +…+ (2 + 1)(2 – 1)
= 100 + 99 + 98 + 97 +…+ 2 + 1
= 5050.
d) D = (20² + 18² + 16² +…+ 4² + 2²) – ( 19² + 17² + 15² +…+ 3² + 1²)
= (20² – 19²) + (18² – 17²) + (16² – 15²)+ …+ (4² – 3²) + (2² – 1²)
= (20 + 19)(20 – 19) + (18 + 17)(18 – 17) + ( 16 +15)(16 – 15)+ …+ (4 + 3)(4 – 3) + (2 + 1)(2 – 1)
= 20 + 19 + 18 + 17 + 16 +15 + …+ 4 + 3 + 2 + 1
= 210
Bài 3. So sánh hai số sau, số nào lớn hơn?
a) A = (2 + 1)(22+ 1)(24+ 1)(28 + 1)(216 + 1) và B = 232
b) A = 1989.1991 và B = 19902
Gợi ý đáp án
a) Ta nhân 2 vế của A với 2 – 1, ta được:
A = (2 – 1)(2 + 1)(22 + 1)(24 + 1)(28 + 1)(216 + 1)
Ta áp dụng đẳng thức ( a- b)(a + b) = a² – b² nhiều lần, ta được:
A = 232 – 1.
=> Vậy A < B.
b) Ta đặt 1990 = x => B = x²
Vậy A = (x – 1)(x + 1) = x² – 1
=> B > A là 1.
Bài 4. Chứng minh rằng:
a) a(a – 6) + 10 > 0.
b) (x – 3)(x – 5) + 4 > 0.
c) a² + a + 1 > 0.
Lời Giải
a) VT = a² – 6a + 10 = (a – 3)² + 1 ≥ 1
=> VT > 0
b) VT = x² – 8x + 19 = (x – 4)² + 3 ≥ 3
=> VT > 0
c) a² + a + 1 = a² + 2.a.½ + ¼ + ¾ = (a + ½ )² + ¾ ≥ ¾ >0.
Bài 5. Tìm giá trị nhỏ nhất của các biểu thức sau:
a) A = x² – 4x + 1
b) B = 4x² + 4x + 11
c) C = 3x² – 6x – 1
Lời giải
a) Ta sẽ biến đổi A= x² – 4x + 1 = x² – 4x + 4 – 3 = ( x- 2)² – 3
Do ( x- 2)² > 0 nên => ( x- 2)² – 3 ≥ -3
Vậy giá trị nhỏ nhất của biểu thức A(Amin) = -3 khi và chỉ khi x = 2.
b) B = 4x² + 4x + 11 = (2x + 1)² + 10
Vậy Bmin = 10 khi và chỉ khi x = -½.
c) C = 3x² – 6x – 1 = 3(x – 1)² – 4
Vậy Cmin = -4 khi và chỉ khi x = 1.
Bài 6. Cho a + b + c = 2p. Chứng minh rằng: 2bc + b² + c² – a² = 4p(p – a)
Ta sẽ đi biến đổi VP.
VP = 2p(2p – 2a) = (a + b + c)( a + b – c) = ( b + c )² – a² = b² + 2bc + c² – a² = VT (đccm)
Bài 7. Hiệu các bình phương của 2 số tự nhiên chẵn liên tiếp bằng 36. Tìm hai số ấy.
Lời Giải
Gọi 2 số chẵn liên tiếp là x và x + 2 (x chẵn). Ta có:
(x + 2)² – x² = 36
<=> x² + 4x + 4 – x² = 36
<=> 4x = 32
<=> x = 8
=> số thứ 2 là 8+2 = 10
Đáp số: 8 và 10
Bài 8. Tìm 3 số tự nhiên liên tiếp biết rằng tổng các tích của từng cặp 2 số trong 3 số ấy bằng 74
Lời Giải
Gọi 3 số tự nhiên liên tiếp là: x – 1, x, x + 1 ( đk: x>0)
Vậy ta có: x(x – 1) + (x – 1)(x + 1) + x(x + 1)= 74
Ta nhân vào và rút gọn đi ta có:
x² = 25 <=> x = -5 , x = 5
So sánh với Đk: x>o => x = 5 (t/m).
Vậy đáp số: 4, 5, 6.
II/ Bài tập tự giải
Bài 1. Chứng minh các hằng đẳng thức sau:
a) (a² – b²)² + (2ab)² = (a² + b²)²
b) (a² + b²)(c² + d²) = (ac + bd)² + (ad – bc)²
Bài 2. Cho a + b + c = 2p. Chứng minh rằng:
(p – a)² + (p – b)² + (p – c)² = a² + b² + c² – p²
Bài 3. Tìm giá trị lớn nhất của các biểu thức sau:
a) 5 – 8x – x²
b) 4x – x² + 1
Bài 4. Tính giá trị của các biểu thức:
a) x² – 10x + 26 với x = 105
b) x² + 0,2x + 0,01 với x = 0,9
Bài 5. Hiệu các bình phương của 2 số tự nhiên lẻ liên tiếp bằng 40. Tim 2 số ấy.
Đ/S: 9 và 11.
Bài 6. Tổng 3 số a, b, c bằng 9, Tổng các bình phương của chúng bằng 53. Tính ab + bc + ca.
Đ/S: ab + bc + ca = 14.
…………..
Mời các bạn tải file tài liệu để xem thêm nội dung chi tiết